SOME CODES WHICH ARE INVARIENT UNDER

 A DOUBLY-TRANSITIVE PERMUTATION GROUP AND THEIR CONNECTION WITH BALANCED INCOMPLETE BLOCK DESIGNS TADAO KASAMI SHU LIN

CONTRACT NO. AF19(628)-4379 PROJECT NO. 5628 TASK NO. 562801

SCIENTIFIC REPORT NO. 6 JANURRY 28, 1966

PREPARED FOR
AIR FORCE CAMBRIDCE RESERRCH LABS.
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
 BEDFORD. MASSACHUSETTS

DEPARTMENT OF

ELECTRICAL ENGINEERING UNIVERSITY OF HAWAII HONOLULU, HAWAII

AFCRL - $66-14 \%$

SOME CODES WHICH ARE INVARIANT UNDER A DOUBLY-TRANSITIVE PERMUTATION GROUP AND THEIR CONNEC'TION WITH BALANCED INCOMPLETE BLOCK DESIGNS
T. Kasami and S. Lin

Department of Electrical Engineering University of Hawaii Honolulu, Hawai1

Contract No. AF19(628)-4379
Project No. 5628
Task No. 562801

Scientific Report No. 6

January 28, 1966

Prepared for

Air Force Cambridge Research Laboratories
Office of Aerospace Research
United States Air Force
Bedford, Massachusetts

ABSTRACT

If a binary code is invariant under a doubly-transitive permutation group, then the set of all code words of weight j forms a balanced incomplete block design. Besides the extended normal $B C H$ codes and the extended quadratic residue codes, the Reed-Muller codes are proven to be invariant under a doubly-transitive permutation group. Thus, BIB designs can be derived from these classes of codes. It is shown that if the symbols of the Reed-Muller codes are properly arranged, and if the first digit is omitted, then all Reed-Muller codes are cyclic.

SOME CODES WHICH ARE INVARIANT UNDER A DOUBLY-TRANSITIVE PERMUTATION GROUP AND THEIR CONNECTION WITH BALANCED INCOMPLETE BLOCK DESIGNS

(T. Kasami and S. Lin)

1. Introduction

Two classes of codes which are invariant under a doubly-transitive affine group of permutations will be presented in this report. It is our objective to show a connection between these classes of codes and some balanced incomplete block designs. One class of these codes is the extended normal Bose-Chaudhuri-Hocquenghem codes which have been proven to be invariant under a doubly-transitive affine group of permutations by W. W. Peterson (1). In this report, we shall prove that Reed-Muller codes also have this invariant property.

For convenient reference, the definition of a balanced incomplete block design is presented here.

Definition 1-1: A balanced incomplete block design is an arrangement of v objects into b sets satisfying the following conditions:
(1) Each set contains exactly k different objects.
(2) Each object occurs in exactly r different sets.
(3) Any pair of objects occurs in exactly λ different sets.

The integers v, b, r, k, λ are called the parameters of the design and it is easy to show that they satisfy the following relations

$$
\begin{align*}
b k & =v r \tag{1}\\
\lambda(v-1) & =r(k-1) \tag{2}
\end{align*}
$$

We also call a balanced incomplete block design as a (b, v, r,k, $)$ configuration (5). An important area of application for block designs is in the design of experiments for statistical studies. For a thorough
treatment of this subject the reader is referred to Henry B. Mann (3) and R. C. Bose (6,8). In consequence of this use the objects are called "treatments" and the sets are called "blocks". With any block design, we may associate an incidence matrix A.

Definition l-2: If S is a block design with blocks B_{1}, B_{2}, . . B_{b} and objects $0_{1}, 0_{2}, \ldots . O_{v}$, the incidence matrix $A=\left(a_{i j}\right)$, where $i=1,2, . . \quad . b$ and $j=1,2, . . \quad . \quad$ of S is defined by the rules

$$
\begin{array}{ll}
a_{i j}=1 & \text { if } 0_{j} \in \mathbb{B} \\
a_{i j}=0 & \text { if } 0_{j} \notin B_{i} \tag{3}
\end{array}
$$

Clearly, A is a bxv matrix of zeros and ones such that each row contains k ones, each column contains r ones, and any two columns have ones in corresponding positions exactly λ times. Conversely, the existence of a matrix A with these properties is equivalent to the existence of a block design.

In this report, we shall show that some block designs can be derived from the well known Bose-Chaudhuri-Hocquenghem codes and Reed-Muller Codes. Both of these two classes of codes are invariant under a doublytransitive affine group of permutations.
2. Codes which are invariant under a doubly-transitive affine group
of permutations and their conucetion with balancod incompleto block
designs

Leta be a primitive eiement of GF(2^{m}). A t-roror correcting binary
BCH code is obtained by requiring

$$
\begin{equation*}
\alpha_{, ~ a}^{2}, \alpha^{3}, \ldots, a^{21} \tag{14}
\end{equation*}
$$

to be ronts of any code vector f(x). Then an winded normal BCH code is defined as follows;

Let V be thr wide which is the null space of the matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & . & . & 1 \tag{5}\\
0 & 1 & \alpha & \alpha^{2} & & & 1 \\
0 & 1 & \alpha^{2} & \alpha^{4} & & & \\
1 & & & \alpha^{n-1} \\
\cdot & & & & & & \\
0 & & & & & & \\
0 & 1 & \alpha^{2 t} & \alpha^{4 t} & . & . &
\end{array}\right)
$$

where $n=2^{m}-1$. This is a normal $B C H$ code with an overall parity check added as the first digit. This class of codes have been proven to be invariant under a doubly-transitive affine group of permutations (1) by W. W. Peterson. We shall state the theorem without proof.

Theorem 2-1 (Peterson): An extended normal BCH code is invariant under a doubly-transitive affine group of permutations of its digits. More specifically, let us number each digit in a code vector with the Galois field element that appears in the corresponding position in the second row of H, i.e. the first symbol in each code vector is numbered o, and for i, the ith digit is numbered as α^{1-2}. The theorem states that for any field elements a and b, if for any code vector, the symbol in position X is permuted to position $a X+b$, the resulting vector is also a code vector in V.

Next, we shall prove that Reed-Muller codes are also invariant under a doubly-transitive affine group of permutations. Let us construct a matrix as follows;

$$
H=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdot & 1 \tag{6}\\
0 & 1 & \alpha & \alpha^{2} & &
\end{array}\right.
$$

where α is a primitive element of $G F\left(2^{m}\right)$ and $n=2^{m}-1$. The null space V of H is an extended binary $N B C H$ code (or cxtended Hamming code). The field $G F\left(2^{m}\right)$ can be considered as a vector space of dimension m over the binary field. If each α^{i} in H is represented as a column vector of m binary digits, H is then $a(m+1) \times 2^{m}$ matrix

$$
H=\left(\begin{array}{c}
v_{0} \tag{7}\\
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
v_{m}
\end{array}\right)
$$

where $v_{0}=(1,1,1, . ., 1) . H$ is just the generator matrix of the first order Reed-Muller code of length 2^{m} with different permutation of columns. The row space U of H is the first order Reed-Muller code and is the null space of V which is a special case of the extended NBCH codes. Since V is invariant under a doubly-transitive affine group of permutations, Il is also, by the following theorem.

Theorem 2-2 (2): If V is invariant under a group G of permutations P, then the null space U of V is also invariant under G.

Now, let us define the vector product of two vectors as follows:

$$
\begin{align*}
& u=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right) \\
& v=\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right) \tag{8}\\
& u v=\left(a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, . . ., a_{n} b_{n}\right)
\end{align*}
$$

Then, the rth order Reed-Muller code is formed by using as a basis the vectors $v_{o}, v_{1}, v_{2}, . . ., v_{\mathrm{m}}$ of H of Eq. (7) and all vector products of
these vectors r or fewer at a time, where $r<m$. Therefore, each code vector of the rth order Reed-Muller code is a linear combination of vectors $v_{0}, v_{1}, v_{2}, . . ., v_{m}$ and their vector products. We can express every code vector as a polynomial of degree r or less in $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$

$$
\begin{equation*}
w=\Gamma\left(v_{0}, v_{1}, v_{2}, \cdots, v_{m}\right) \tag{9}
\end{equation*}
$$

We know that the first order Reed-Muller code is a subcode of the rthorder Reed-Muller code and is invariant under a doubly-transitive affine group G of permutations $P . \quad P v_{j}=v_{j}^{\prime}=\sum_{i=0}^{m} a_{i} v_{i}$ is a linear combination of $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$, where $j=0,1,2, \ldots, \ldots, \quad \mathbf{m}(w)=$ $P \Gamma\left(v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right)=f^{\prime}\left(P v_{0}, P v_{1}, P v_{2}, \ldots ., P v_{m}\right)$. When $\Gamma(w)=\left(P v_{0}, P v_{1}, \ldots, P v_{m}\right)$ is expanded, this results in a different polynomial $\Gamma^{\prime}\left(v_{0}, v_{1}, v_{2}, . ., v_{m}\right)$ of degree r or less in v_{0}, v_{1}, v_{2}, . . . v_{m}. Thus $\Gamma^{\prime}\left(v_{o}, v_{1}, v_{2}, . ., v_{m}\right)$ is also a codevector of the rth order Reed-Muller code. This implies that the rth order Reed-Muller code is invariant under a doubly-transitive affine group of permutations. Let Q be any permutation, then $V^{\prime}=Q V$ is an equivalent code of V. It is easy to show that, if code V is invariant under a group G of Permutations P, then V^{\prime} is invariant under the group G^{\prime} of permutations $Q^{-1} P Q$ with $P \in G$. Thus, the Reed-Muller codes in original form are also invariant under a doubly-transitive group of permutations.

Let a be a primitive element of $\operatorname{GP}\left(2^{m}\right)$. Consider a Reed-Muller code of any order (in the form described in this report) and the permutation αX. This permutation will leave the first digit of every code vector unpermuted, but shift cyclically the rest $2^{m}-1$ digits by one position. Since the code is invariant under the permutation αX, thus, the shortened
code obtained by deleting the first digit of each code vactor of the Reed-Muller code is cyclic.

Suppose that the code V is invariant under a doubly-transitive permutation group and let S_{k} be the set of codevectors of weight k. It is easy to see that S_{k} is also invariant under the doubly-transitive permutation group. Thus, we have the following two theorems.

Theorem 2-3. Let $N(k)$ be the number of code vectors of weight k of a code V which is invariant under a doubly-transitive permutation group. If these code vectors are arranged as a $N(k) x n$ matrix A, then the number of ones in each column of A is constant and is equal to

$$
\begin{equation*}
r=\frac{k N(k)}{n} \tag{10}
\end{equation*}
$$

where n is the length of the code V.
Proof. Because the permutation group is transitive, for every (, there exists a permutation that carries column 1 into column (. This permutation leaves the rows of A unchanged except it rearranges the rows. It follows that column 1 and column (of A have the same number of ones which is equal to

$$
\begin{equation*}
r=\frac{k N(k)}{n} \tag{11}
\end{equation*}
$$

Theorem 2-4. Any two columns of the matrix A have ones in corresponding positions exactly λ times, and λ is equal to

$$
\begin{equation*}
\lambda=\frac{k(k-1) N(k)}{n(n-1)} \tag{12}
\end{equation*}
$$

Proof. Because the permutation group is doubly-transitive, there exists a permutation which will permute the ith column of A to the first column of A, and the f th column to the second column. Since the permutation permutation leaves the rows of A invariant except it rearranges the rows, we can rearrange the rows to obtain the original matrix A. It follows that the number of ones in corresponding positions between ith and f th columns is exactly equal to the number of ones in corresponding positions between the first and second columns. This implies the theorem. It is easy to show that

$$
\begin{equation*}
\lambda=\frac{k(k-1) N(k)}{n(n-1)} \tag{13}
\end{equation*}
$$

The matrix A is thus a $N(k) x n$ matrix with zeros and ones, such that each row has exactly k ones, each column has exactly $r=\frac{k N(k)}{h}$ ones, and any two columns have ones in corresponding positions for exactly $\lambda=\frac{r(k-1)}{n-1}$ positions. Therefore, A is the incidence matrix of a balanced incomplete block design with parameters.

$$
\begin{array}{ll}
v=n, & b=N(k), \\
k, \text { and } \quad \lambda=\frac{r(k-1)}{n} &
\end{array}
$$

From theorem 2-3 and theorem 2-4, we have observed that if a binary code is invariant under a doubly-transitive permutation group G, then the set of all code vectors of weight k forms a balanced incomplete block design. In this report, we have shown that extended binary BCH codes of length 2 and Reed-Muller codes are invariant under a doubly-transitive permutation group, thus BIB designs can be derived from them. The extended quadratic residue codes have also been proven to be invariant under a doubly-transitive permutation group (9). The connection between perfect
codes and steiner systems has been discussed by Assmus and Mattson (7).
3. Examples

Example 1. Consider the extended 2-error correcting NBCH code with $m=4$. The weight distribution is as follows:

Weight	Number of code vectors
0	1
6	48
8	30
10	48
16	1

Three BIB designs can be designs can be derived from this code with parameters as follows:
(a) $v=16 \quad b=48 \quad r=18, k=6, \lambda=6$.
(b) $v=16, \quad b=30, \quad r=15, \quad k=8, \lambda=7$.
(c) $\quad v=16, \quad b=48, \quad r=30, \quad k=10, \lambda=18$.

Example 2. Consider the extended NBCH 5-error correcting code with $m=5$. The weight distribution is

0

12

16 20 32

1

496
1054

496

1

Three BIB designs can be derived from this code with parameters as follows
(a) $v=32, \quad b=496, \quad r=186, \quad k=12, \lambda=66$.
(b) $v=32, \quad b=1054, r=527, k=16, \lambda=255$.
(c) $v=32, \quad b=496, \quad r=310, \quad k=20, \lambda=190$.

Example 3. Consider the second order Reed-Muller code with m=4. The basis vectors of this code are.

| v_{0} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| v_{1} | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| v_{2} | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| v_{3} | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| v_{4} | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| $v_{1} v_{2}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| $v_{1} v_{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| $v_{1} v_{4}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $v_{2} v_{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| $v_{2} v_{4}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| $v_{3} v_{4}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |

The weight distribution of this code is as follows:

0	1
4	140
6	448
8	870
10	140
16	1

5 block designs can be derived from this code, they are
(a) $\quad v=16, \quad b=140, \quad r=35, \quad k=4, \quad \lambda=7$.
(b) $v=16, \quad b=448, \quad r=168, k=6, \quad \lambda=56$.
(c) $\quad v=16, \quad b=870, \quad r=435, \quad k=8, \quad \lambda=203$.
(d) $v=16, \quad b=448, \quad r=280, \quad k=10, \lambda=168$.
(e) $v=16, b=140, r=105, k=12, \lambda=77$.

Example 4. Consider the extended quadratic residue $(17,8)$ code with weight distribution

0	1	
6	6×17	
8	9×17	
10	9×17	
12	6×17	
18		1

Four block designs can be derived from this code with parameters as follows:
(a) $v=18, \quad b=102, \quad r=34, \quad k=6, \quad \lambda=10$.
(b) $\quad v=18, \quad b=153, \quad r=68, \quad k=8, \quad \lambda=28$.
(c) $v=18, \quad b=153, \quad r=85, \quad k=10, \lambda=45$.
(d) $\quad v=18, \quad b=102, \quad r=68, \quad k=12, \lambda=44$.

4. Conclusion.

We have shown that if a binary code is invariant under a doubly-transitive permutation group, then the set of all code vectors of weight k forms the incidence matrix of a balanced incomplete block design. We have also proven that the extended binary normal $B C H$ codes and the Reed-Muller codes are invariant under a doubly-transitive permutation group, thus BIB designs can be derived from them. We have also observed that if the symbols of the Reed-Muller codes are properly arranged, and if the first digit is omitted, then all Reed-Muller codes are cyclic. Thus, the generator
polynomial of a shortenced Reed-Muller code may be found. With the generator polynomial and the invariant property under a doubly-transitive permutation group, the encoding and the decoding procedures for a ReedMuller code may be simplified. Also, it seems that Reed-Muller codes might be invariant under a tribly-transitive permutation group.

ACKNOWLEDGMENT

The authors wish to thank Professor W. W. Peterson of the Electrical Engineering Department, University of Hawaii, for his help and comments.

REFERENCES

1. Peterson, W. W., On the Weight Structure and Symmetry of BCH Codes, AFCRL-65-515, Air Force Cambridge Research Labs., Bedford, Mass. (July 10, 1965).
2. Peterson, W. W., Error-Correcting Codes, Wiley, New York (1961).
3. Mann, H. B., Analysis and Design of Experiments, Dover Publications, Inc., New York (1949).
4. Beckenbach, E. F. (Editor), Applied Combinatorial Mathematics, Wiley, New York (1964).
5. Ryser, H. J., Combinatorial Mathematics, Wiley, New York (1963).
6. Bose, R. C., On the Construction of Balanced Incomplete Block Designs, Ann. Eugenics 9(1939), 353-399.
7. H. F., E. F. Assmus, H. F. Mattson, and R. Turyn, Cyclic Codes. AFCRL-65-332, Air Force Cambridge Research Labs., Bedford, Mass.
8. Bose R. C. and Shrikhande S. S., On the Composition of Balanced Incomplete Block Designs, Canad. J. Math. 12 177-188, (1960).
9. Prange, E., Private Commuication.

Unc-aisifled
security Thavification

14. . KEY WORDS	Link ${ }^{\text {a }}$		Link		Link C	
	Role	*T	ROLE	${ }^{*}$	ROLE	w
Doubly-transitive permutation group Balanced incomplete block design Bose-Chaudhuri-Hocquenghem codes Reed-Muller codes Cyclic.	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD) Directive 5200. 10 and Armed Forces Industrial Manual.
Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the riame(s) of authoris) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
Ba. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
8b, 8c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, military departmen number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified cial report number by which the document will be
and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U, S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as $(T S)$, (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

